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ARTICLE INFO ABSTRACT

Keywords: The association between heat or heat waves and mortality should often be reported in a way that makes it

Heat sensible by health policymakers. In this study we aimed to assess the effect of heat and heat waves on mortality

Heat wave using attributable risks during 2005-2017. Nine heat waves were defined using a combination of severity and

Mor.tality X duration of mean daily temperature. Heat wave effects were assessed using added and main effects. Added

Attributable risk effects were assessed as a binary variable and main effects were assessed by comparing the median temperature
(in heat wave days) to Minimum Mortality Temperature (MMT). The effects of heat, mild heat and extreme heat
on mortality were also assessed. Distributed Lag Non-linear Models were used to assess the relations in a bi-
dimensional perspective in which the quadratic b-spline was chosen as the basis function for the dimension of
the exposure and the natural cubic b-spline was chosen for lag dimension. The backward perspective was used to
estimate the attributable risks. The total mortality attributed to non-optimal temperatures for all days was 1.91%
(CI 95%: -6.36, 8.47). The attributable risks (AR) were 2.23%, 2.02% and 0.25% for heat, mild heat and extreme
heat days, respectively. AR was more for females and the above 65 years old groups than other groups in heat,
mild heat and extreme heat days. While the stronger heat waves defined based on temperature above the 95 and
98th percentile had a significant attributable risk for total mortality in the added effects; the weaker heat waves
(defined based on temperature above of the 9ot percentile (HW1, HW2, HW3) had higher attributable risks,
significant for HW1 and HW2, in the main effects. Apparently weaker heat waves show more immediate effects,
while stronger heat waves increase mortality over several days.

1. Introduction et al., 2018; Sharafkhani et al., 2019; Aboubakri et al., 2018). Also
human heat related mortality has increased with global warming

Increasing mortality due to weather conditions has become a public (Pachauri et al., 2014; Dadbakhsh et al., 2018; Sharafkhani et al.,

health concern. Heat is one of the important factors affecting human
mortality in many countries (Dadbakhsh et al., 2017; Deng et al., 2018;
Kalankesh et al., 2015; Sharafkhani et al., 2017). Several studies have
assessed the effect of heat on mortality using modern time series ana-
lysis (Stafoggia et al., 2006; Zheng et al., 2018; Zhong et al., 2018; Miao
et al., 2017). An immediate effect of heat on mortality has been shown
in many studies and some subgroups are more vulnerable. For example
a multicity study in Italy found higher heat-related mortality for women
than men (Stafoggia et al., 2006). Also some epidemiological evidence
have shown that elderly people are more at risk than younger people
(Ishigami et al., 2008).

One of the extreme weather events is heat waves, that are likely to
become more frequent and more intense in the coming decades (Song

2018). Previous research have studied the effects of heat in two man-
ners: the “main and the added effect”. The former is the independent
effect of daily temperature levels that is estimated by the usual ex-
posure-response function from the temperature-health relation in-
cluding both heat wave and non-heat wave days, while the latter is the
added risk due to the duration of sustained heat for some consecutive
days that is commonly estimated by an indicator (Chen et al., 2015;
Gasparrini and Armstrong, 2011).

It is important to report the association between heat or heat wave
and mortality in a way that makes it understandable by lay people and
policymakers. Most researchers have examined the association in terms
of ratio measures, such as relative risk (RR) and OR. These measures
provide useful information on the burden of exposure, but relative
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attributable measures, such as attributable fraction or attributable
number are more helpful for evaluating the potential benefits of pre-
ventive interventions. The attributable fraction (AF) is the amount of
death that can be attributed to a specific risk factor and has an im-
portant role in public health evaluations. The AF combines relative risk
and the prevalence of exposure to measure the public health burden of a
risk factor (Steenland and Armstrong, 2006). There are few studies
evaluating the effect of heat wave on mortality using the attributable
fraction. In this study we aimed to assess the effect of heat and heat
waves on mortality using the attributable fraction/number approach.

2. Methods
2.1. Data and area under study

Kerman city has a population of about 740,000 people and is lo-
cated in Kerman province in southeastern Iran. It is located at
56°5230”-57°07'30”E and 30°07°30”-30°22"30”N and in a flat plain
that has an altitude of 1754 m. It is a semi-arid to dry region that has
hot summers and cold winters. The temperature range is wide and
varies from —8 to 37 °C throughout the year (Hamzeh et al., 2011;
Atapour, 2015).

Meteorological and mortality data from January 2005 to March
2017 were inquired from the Iran Meteorological Organization and the
Death Registry of the Health Deputy of Kerman University of Medical
Sciences, respectively. Ambient air pollution data (PM;o, SO, O3, NO2,
CO, NO and PM,; 5), as potential confounders, were inquired from the
Kerman Department of Environment.

2.2. Heat wave definition

There is no worldwide agreement on the standard definition of heat
waves. In the literature, intensity and duration of temperature has been
used as the definition of heat waves (Song et al., 2018; Lee et al., 2016).
Also, some previous studies have suggested that defining the heat wave
based on one parameter is not suitable for different climates. However,
many studies have used daily mean temperature, as a better predictor
for mortality than the minimum or maximum daily temperature (Xu
et al., 2016; Xu et al., 2018; Xu and Tong, 2017). In the models used in
present study, the AIC for daily mean temperature was less than
minimum or maximum daily temperature. Therefore, the heat wave
was defined using a combination of severity and duration of mean daily
temperature. Nine definitions of a heat wave were used that have been
listed in Table 1.

Heat wave effects were assessed using two effects of heat including
added and main effects. Main effects shows the independent effects of
daily temperature, while the excess risk due to sustained high tem-
peratures for several consecutive days is considered as the added effect
(17). Added effect was assessed using a binary variable. Nine binary

Table 1
Different definitions of heat wave using percentile and duration of mean tem-
perature along with median temperature.

Heat Definition Median temperature
wave (°C)
Percentile Duration of high
temperature

HW1 =90th percentile of =2 consecutive days ~ 30.10
HW2 temperature =3 consecutive days 30.10
HW3 =4 consecutive days  30.20
HW4 =95th percentile of =2 consecutive days 30.80
HW5 temperature =3 consecutive days ~ 30.90
HW6 =4 consecutive days 30.95
HW7 =98th percentile of =2 consecutive days ~ 31.70
HWS8 temperature =3 consecutive days 31.70
HW9 =4 consecutive days 31.75
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variables were constructed, in which code 1 was assigned to heat wave
days and 0O to non-heat wave. Main effect was assessed by comparing
the median temperature (in heat wave days) to the Minimum Mortality
Temperature (MMT). The median temperatures are shown in Table 1.
MMT was found using methods used in recent papers (Tobias et al.,
2017).

2.3. Heat definition

In addition to heat wave, the effects of heat, mild heat and extreme
heat on mortality were also assessed in this study. Temperature above
MMT was defined as heat. Temperature between the MMT and the 99th
percentile and over the 99th percentile were defined as mild and ex-
treme heat respectively.

2.4. Modeling strategy

Distributed Lag Non-linear Models were used to assess the relations
in a bi-dimensional perspective which can vary non-linearly along the
space of the predictors and lags (Gasparrini, 2013). The quadratic b-
spline was chosen as the basis function for the dimensions of exposure
and the natural cubic b-spline was chosen for lag dimensions. Spline
knots were placed at equal spaces for both dimensions. They were
placed in log scale for lag dimensions. The MMT value was selected as
the reference value. There was uncertainty about the MMT point in this
study and it was strongly dependent on the model used. It was 22.7 °C
for the model presented in this study. The maximum lag of 14 was used
because previous studies have suggested that hot temperature effects
are limited to the 2 first weeks of exposure (Ma et al., 2014).

Initially generalized linear models and Poisson models were ap-
plied. The model is shown in equation (1). In this equation, Y, refers to
the number of deaths on day t. Temp (temperature) and HW (Heat
Wave) are the main exposure variables at time t, « is the intercept, Cb is
the cross-basis function in DLNM framework that shows the exposure
value at time t and lag time £ and is a matrix including 14 lags in this
study. NS and ¢, represent the natural spline function and the residual at
time t, respectively. According to the lowest Akaike information cri-
terion (AIC), the degree of freedom = 3 was selected for the natural
spline. The time variable with a degree of freedom = 5 per year was
selected in order to control the trend and seasonal effects. The degree of
freedom = 5 was also selected based on the lowest AIC. In the model,
DOW and Holiday are the days of the week and the public holidays,
respectively. Holiday was entered as a binary variable into the model.
The DOW variable is a qualitative variable with 7 categories, and Friday
(the weekend in Muslim countries) was considered as the reference.

log(Y¥) = a+ Cbltemp,, + Cb2HW;, + NS (SO,, 3) + NS (PMyo, 3)
+ NS (03, 3) + NS(Time, 5*year) + DOW + Holiday + &
M
Y; _Poisson ().

2.4.1. Atributable risk

The attributable risk measure within DLNM is produced in two
perspectives; backward and forward. Both perspectives have been
suggested by Gasparrini et al. (Gasparrini and Leone, 2014). The for-
ward perspective is likely to produce some bias, therefore the backward
perspective was used in this study.

The risk in DLNM can be described by exposure-response function f
(x) and lag-response function w(£). Two sets of basis functions are in-
dependently selected to represent f(x) and w({), respectively. Cross-
basis is a bi dimensional space of functions obtained by the combination
of the two sets integrated over the lag dimension. The details have been
presented by Gasparrini et al. (Gasparrini et al., 2010, 2014; Gasparrini,
2014).
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L
WI,tU = Z ﬁxl,g* ¢

£=40

(2)

The w;m in equation (2) is a cross-basis that combines two functions
(the risk of exposure-response and risk of lag-response) and it shows the
overall cumulative effect along £ = 4, and L, that are minimum and
maximum lags respectively. The minimum and maximum lags were 0
and 14 respectively in this study. Here t refers to time, £ is lag time, x is
the exposure experienced in past period £ and Bx ¢ represents the as-
sociation with an exposure x at lag £ versus the reference value x0
(counterfactual situation). The added effect of heat wave was assessed
using the binary variable. Thus the counterfactual condition was non-
heat wave days and for temperature it was the MMT point. The sum of
contributions of Px from exposures X o,..., X, €xperienced within the
lag period make the overall cumulative effect (w;{,m).

(3)

In equation (3), AF is Attributable Fraction that basically comes
from “(RR-1)/RR” and then “1-exp (-Bx)”. Here the coefficient B is re-
placed with the overall cumulative effect calculated from (wlm) in
DLNM, so the AE; represents the related fraction at time t attributable
to past exposures to x in the period t-fo, . L compared to a constant
exposure X, throughout the same period.

The attributable number of deaths for each day due to past exposure
to x can also be calculated through equation (4):

ANy = AEp. oy (4)

where AN represents the number of deaths at day t attributed to ex-
posure x. It is calculated by multiplying the attributable fraction to the
number of deaths in each day ( n;).

The above formula can be developed to break up the attributable
components related to special exposures or exposure ranges. The range
used in this study were between the MMT (22.7 °C) to the maximum
temperature, MMT to the 99th percentile, and 99th percentile to the
maximum temperature that were considered as heat, mild heat and
extreme heat respectively. The range was restricted to heat wave days
and median temperature observed in heat wave days in order to eval-
uate the added and main effect of heat waves respectively.

An estimate of the total attributable number AN and fraction
AF o is calculated using equations (5) and (6) respectively. In equa-
tion (5), the attributable number that was calculated for each day by
equation (4) is arithmetically summed. Finally, dividing the total at-
tributable number of deaths to the deaths in all observations (number of
death on all days) gives the total attributable fraction (equation (6)). In
the formulas, i is the observation in the data set and m is the maximum
observation.

m

ANt = ), ANy,

i=1

(5

ANtoml
m

21:1 ny

The 95% confidence intervals for the AFs was
Monte Carlo simulations.

The analysis were performed using Excel 2013 and R software
version 3.3.2. The values were considered significant if the confidence
interval excluded 0.

AFota1 =
(6)

estimated using

2.5. Ethical consideration

All information was inquired as aggregated and without individual
identity. The research proposal was approved by the Ethics Committee
of Kerman University of Medical Sciences. Ethics Code IR.
KMU.REC.1396.2374.
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Table 2
Summary of descriptive statistics of daily temperature and mortality by dif-
ferent age and sex groups.

Variable Group Mean Standard Deviation Percentile
25 50 75
Mortality Male 6.20 3.05 4 6 8
Female 4.30 2.42 3 4 6
< 65 years 5.43 2.92 3 5 7
> =65 years 5.13 2.67 3 5 7
Total 10.54 4.31 8 10 13
Mean temperature — 17.32 8.87 99 181 25

3. Results

About 46,200 deaths due to all-causes occurred during 2005-2017.
The average daily mortality was 10.54 ( = 4.31) deaths that was
greater for men (6.20) than women (4.30) and the daily mean tem-
perature was 17.32 ( = 8.87)°C. Table 2 shows the daily mean, and the
25, 50 and 75th percentile of mortality and temperature.

The total mortality attributed to non-optimal temperatures for all
days was 1.91% in Kerman and was not significant.

Fig. 1 shows the overall cumulative relative risk along temperature
distribution with the minimum mortality temperature point and the
cutoffs to define extreme temperatures over the period of 2005-2017.
While there was no significant effect of cold temperature on mortality
in any temperature value in the cold range, the cumulative relative risk
was significant for hot temperatures.

The attributable risks of total mortality were significant for heat,
mild heat and extreme heat days and were 2.23%, 2.02% and 0.25%
respectively. Table 3 shows the mortality attributable to the days by
different subgroups. The attributable risk was more for females and the
above 65 years old groups in heat, mild heat and extreme heat days.
But, it was only significant in heat and mild heat.

Table 4 shows the mortality attributable risk to main and added
effects of heat waves by 9 different definitions and different sex and age
groups. While the heat waves defined based on temperature above the
95 and 98th percentile had a significant attributable risk in total mor-
tality in the added effects, the weaker heat wave (defined based on
temperature above of the 9ot percentile (HW1, HW2, HW3) had higher
attributable risks in the main effect, significant in HW1 and HW2.
Table 4 also shows those aged > 65 years old have higher AF than
youngers in both effects.

Fig. 2 shows the frequency of heat wave days (the blue bars) and the
frequency of days with median temperature during the study time
frame (the orange bars). The cumulative relative risk (red lines) for
total mortality in main (the right half of Fig. 2) and added (the left half
of Fig. 2) effects for all definitions of heat waves has also been shown.
The cumulative relative risk was significant for the strong heat waves
(temperature above 98th percentile, HW 7, HW8, HW9) in the added
effect. However, the frequency of these heat wave days were less than
the weaker heat waves. In main effect, the cumulative relative risks
were significant for all definitions. However, the attributable risk were
lower for all definitions in main effect than added effect (Table 4).

For easier comparison between the two effects, we have shown the
attributable number of total mortality in Fig 3. There are obviously
higher attributable numbers (AN) in the added effects than main effects.

4, Discussion

As far as we know, this was the first study to explore all-cause
mortality attributable to temperature range and heat waves in Iran. The
attributable risk was higher for heat (2.23 percent) than all other non-
optimum temperature. Also, the result showed that the attributable risk
of females and over 65 years age groups mortality associated with heat
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Overall cumulative association and temperature distribution
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Fig. 1. The graph above shows the overall cumulative relative risk of temperature on total mortality over 0-14 day lags. The graph below shows the frequency of
temperature. The pink line is the reference value. The dashed lines are the 1st and 99th temperature percentile and show the cut -off points for extreme cold and heat

temperatures respectively.

were higher than males and under 65 years olds. While weaker heat
waves had higher and significant attributable deaths in main effect,
strong heat waves (defined based on temperature above the 95 and
98th percentile) had higher and significant attributable death in added
effects. The attributable death calculated for the added effects of heat
waves were considerably more than main effects in all definitions.

Some studies have measured the attributable mortality related to
heat using similar approaches. For example, Yang et al. investigated
cardiovascular mortality risk attributable to ambient temperature in
China (Yang et al, 2015). They found that 17.1% (95% CI
14.4%-19.1%) of CVD mortality (330,352 deaths) was attributable to
ambient temperature. There was substantial differences among cities,
from 10.1% in Shanghai to 23.7% in Guangzhou. This value in Kerman
was 1.91%. The attributable risk to heat was 1.3% in the above men-
tioned study that was approximately similar to our study. Yang's study
had considered 21 days as their maximum lag, because they focused on
both cold and heat effect and they only investigated mortality due to
cardiovascular diseases.

The most important similar study conducted about this topic was
done by Gasparrini et al. (Gasparrini et al., 2015). They calculated at-
tributable deaths for heat and cold in 13 countries. In their study,
7.71% of mortality was attributable to non-optimum temperature and
was more due to cold than heat (7.29% vs 0.42%). Also extreme tem-
peratures (both cold or hot) were responsible for a small fraction of
deaths, and corresponded to only 0.86% (95% CI 0-84%—0-87%). An-
other study looking for the association of all-cause mortality with high
temperature in a temperate climate was conducted by Armstrong et al.
(Armstrong et al.,, 2011) in 10 governmental regions of England and
Wales. The attributable death due to heat was 1% (23,982 deaths).
They used different methods to calculate the attributable risk.

The small difference in death attributed to heat in our study and
previous studies may be justified by differences in the temperature
distribution and period of studies. People usually adapt to the climate
and temperature range of their own region. In the study conducted by
Gasparrini et al. (Gasparrini et al., 2015), the hot days, had a high RR,
but these days were only a small proportion of days under investigation.
In our study hot and cold days had an approximately equal proportion,

Table 3

but hot days had a higher cumulative relative risk.

Several epidemiological studies have shown the adverse effects of
heat wave on mortality. Lee et al. (Lee et al., 2016) evaluated the main
and added effects of heat wave on mortality in Korea, using heat wave
definitions similar to this study. They showed that the added effect of
heat waves caused higher mortality rates as the temperature threshold
increased. For instance, in heat waves above the 90th percentile, the
effect of heat wave on mortality was minimal (3.7-5.8%), but above the
95th percentile, mortality increased by 8.6-11.3%. These results were
similar to our study, and there was a higher cumulative relative risk
above higher percentiles in both effects (Fig. 2, red line). However,
these authors considered 30 days as the maximum lag, but the meth-
odology was similar to our study.

Hajat et al. (Hajat et al., 2006) investigated the effect of high
temperature and the added effects of heat waves on mortality in a 28
year period in London (1976-2003), 31 years in Budapest (1970-2000),
and 18 years in Milan (1985-2002). In London, 0.37% of all mortality
was attributed to heat, and slightly less than half of this fraction was
attributable to the added effects of heat waves (0.16% as defined by the
99th percentile). The fraction of mortality attributable to heat was
higher in Milan and Budapest, but less than one third of these were
attributed to heat waves defined by the 98th percentile (less than one
fifth of heat waves were defined by the 99th percentile). The analysis
used in the study was different from our study and they considered 2
days as maximum lag. As heat, the minor difference in the estimations
between some studies and our results can probably be due to the dif-
ference in methodologies.

There are a few studies about the attributable risk of mortality re-
lated to the main effect of heat waves. But there are some studies,
evaluating the effect using ratio measures, such as relative risk. For
example, one study showed that the relative risks of the main effects of
heat waves increased with the increase in the temperature thresholds
from the 95th to the 99th percentile, and a hot heat wave defined as
above the 99th percentile for 4 days, had the highest risk (RR = 1.93,
95% CI: 1.46-2.55) (Song et al., 2018). We observed such a pattern in
our study as well. In our study, the weaker heat waves, defined as above
the 90th percentile, in the main effect had a lower cumulative relative

The mortality fraction (%) attributable to heat, mild and extreme heat over lag 0-14 days, stratified by gender and age groups in Kerman.

Day Total Male Female < 65years old =65years old
Heat 2.23(0.34,3.87) 1.72(-0.83,4.05) 2.94(0.11,5.44) 0.7(-1.82,3.43) 3.73(1.26,5.82)
Mild heat 2.02(0.3,3.69) 1.49(-0.71,3.59) 2.74(0.04,5.06) 0.63(-2.05,2.98) 3.38(1.04,5.34)

Extreme heat
All days (except reference)

0.25(0.06,0.41)
1.91(-6.36,8.47)

0.22(-0.04,0.45)
5.7(-3.57,13.26)

0.27(-0.04,0.51)
—3.99(-19.9,8.01)

0.06(-0.23,0.29)
—3.7(-15.78,5.89)

0.44(0.15,0.69)
7.72(-3.81,16.58)
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Table 4
The mortality fraction (%) attributable (with confidence interval 95%) to heat wave over lag 0-14 days, stratified by gender and age groups in Kerman.

Heat wave Definition Total Male Female < 65 year old =65 year old

Main effect Hw1* 0.04(0.01,0.06) 0.03(-0.01,0.06) 0.05(0,0.09) 0.01(-0.03,0.04) 0.07(0.03,0.11)
Hw2* 0.04(0.01,0.06) 0.03(-0.01,0.06) 0.05(0,0.09) 0.01(-0.03,0.04) 0.07(0.03,0.11)
Hw3 0.04(0,0.09) 0.02(-0.04,0.08) 0.07(-0.01,0.14) 0(-0.07,0.06) 0.09(0.03,0.16)
Hw4 0.02(-0.01,0.05) 0.02(-0.03,0.06) 0.04(-0.01,0.08) —0.01(-0.06,0.04) 0.05(0.01,0.09)
Hw5 0.02(-0.01,0.04) 0(-0.04,0.03) 0.03(-0.01,0.07) —0.01(-0.05,0.03) 0.06(0.02,0.09)
Hwo6 0.02(-0.01,0.04) 0(-0.05,0.04) 0.04(0,0.07) —0.01(-0.05,0.03) 0.05(0.01,0.09)
Hw7" 0.02(0,0.04) 0.01(-0.02,0.04) 0.03(-0.01,0.05) 0(-0.04,0.03) 0.05(0.01,0.08)
Hws" 0.02(0,0.04) 0.01(-0.02,0.04) 0.03(-0.01,0.05) 0(-0.04,0.03) 0.05(0.01,0.08)
HwW9 0.02(0,0.03) 0.01(-0.01,0.03) 0.03(0,0.05) 0.01(-0.02,0.02) 0.03(0,0.05)

Added effect Hwl 0.48(-0.36,1.28) 0.76(-0.32,1.68) 0.18(-1.24,1.37) 0.09(-1.16,1.13) 0.85(-0.32,1.81)
Hw2 0.55(-0.19,1.27) 0.88(-0.13,1.8) 0.18(-1.19,1.33) 0.24(-0.85,1.3) 0.84(-0.28,1.9)
Hw3 0.44(-0.31,1.14) 0.78(-0.12,1.64) 0.03(-1.21,1.17) 0.25(-0.93,1.23) 0.6(-0.51,1.53)
Hw4 0.53(0.01,1.01) 0.77(0.04,1.41) 0.26(-0.56,1.06) 0.28(-0.56,1.01) 0.77(-0.02,1.45)
Hw5 0.59(0.11,1.05) 0.79(0.14,1.41) 0.36(-0.5,1.11) 0.43(-0.35,1.11) 0.73(0.02,1.39)
Hwoé 0.45(0.01,0.89) 0.71(0.11,1.23) 0.16(-0.63,0.79) 0.22(-0.44,0.79) 0.67(0.04,1.24)
Hw7 0.57(0.25,0.87) 0.77(0.36,1.14) 0.3"-0.28,0.76) 0.47(0.01,0.88) 0.63(0.17,1.05)
HW8 0.56(0.28,0.8) 0.69(0.3,0.99) 0.4(-0.06,0.8) 0.38(-0.03,0.75) 0.7(0.28,1.06)
Hw9 0.4(0.15,0.63) 0.54(0.23,0.81) 0.23(-0.19,0.56) 0.33(-0.04,0.62) 0.47(0.19,0.7)

# The median points were identical.
® The median points were identical.

risk (Fig. 2) and there was higher attributable risk/number of deaths in
the weak heat waves (Table 4 and Fig. 3, orange bars). Probably, be-
cause the frequency of days with the median temperature (temperatures
shown in Table 1) was higher in weaker heat waves than others, in the
main effect, attributable risks were higher in weaker heat waves.
Some previous studies have reported that more heat wave-related
mortality is seen in main effects than added effects (Gasparrini and
Armstrong, 2011; Zeng et al., 2014). Similar to these studies, the cu-
mulative relative risk in main effect were significant for all definitions
in our study, however they were higher for some definitions (stronger
heat waves) in added effect. The small differences in the results of
studies can be because of several reasons. One maybe the different
definition of heat wave. A systematic review conducted by Xu et al. (22)

on heat waves and mortality under different definitions showed that the
adverse effect of heat wave on mortality can be obviously influenced by
heat wave definition, and especially heat wave intensity. The two above
mentioned studies didn't calculate the attributable risk that was much
more for added effect than main effect in our study. Generally, because
of different methods used in different studies in order to calculate at-
tributable risk, comparison is not easy, especially considering the fact
that we estimated the relations with non-linear lag models.

Khanjani et al. conducted a study in Kerman, Iran based on
2004-2008 data. Their results showed decreases in temperature were
associated with increased cardiovascular and respiratory mortality.
These results are in contrary with our results which show increased
mortality with hot temperatures. The reason might be that linear
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Fig. 2. The vertical bars show the frequency of exposure. The blue bars shows the number of days that heat waves happened, according to 9 definitions (Hw-a means
added effect) and the orange bars shows the number of days with the median temperature that happened during heat wave days (Hw-m means main effect). The
horizontal red line represents cumulative relative risk for total mortality in added (the left half) and main (the right half) effects for all definitions of heat waves along
with its 95% confidence interval (the solid black lines). The dashed, black horizontal line is the reference line for the cumulative relative risk.
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Fig. 3. Number of total mortality attributable to heat wave with 9 definitions over lag 0-14 days; the blue shows number of total mortality attributable to added
effect and the orange shows number of total mortality attributable to main effect.

models not considering lag effects were used in their study, which
might have caused bias in the estimations(Khanjani and Bahrampour,
2013).

4.1. Strength and limitations

Although, there are some studies that have evaluated the effect of
heat on mortality using the attributable risk such as absolute excess
(numbers) or relative excess (fraction) of deaths, but these studies have
not considered the delayed effect of exposure or the non-linear relation
between exposure and outcome. A strength of the study was that we
applied a method that took into account non-linearity in the relation of
exposure and its lags with outcome. This method gives us more stable
and flexible estimation of the relation between heat or heat wave and
mortality than non-linear models, and it also estimates less biased
coefficients. One finding of our study, by using this method was that
attributable fraction for the elderly was more than the young. This
finding is meaningful from a public health perspective, because it has
profound implications for heat-warning systems and projections for the
effect of climate change on human health.

Missing data was one of the limitations in our study. The missing
percentage was high for two confounder variables (PM;, and O3) , and
we could not apply a method to predict missing data. Eventually, we
entered the two variables in the model because sensitivity analysis
showed that they should better be in the model and the model without
imputation had a better goodness of fit (lower AIC). The samples (about
4500 days of observation) were also enough to maintain the power of
the study. Fortunately, there was low missing in the outcome data and
main exposures.

In Iran, all deaths and their date, gender, and age are recorded in
the death database of the Health Deputy of the Province's University of
Medical Sciences. People are not allowed to bury the corpse without
recording their death. However, the cause of death might be recorded
inaccurately by health staff, and cause-specific mortality might be
under or over reported. But, in this study we did not use cause-specific
mortality.

5. Conclusion

The highest significant attributable risk/numbers was associated
with the heat waves defined based on temperature above the 95 and
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98th percentile in added effect and the weakest heat waves in main
effect. The adverse health effects of heat waves should mainly be pre-
vented through public health education and alert systems.
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